
Minimum-Distortion Continuous Cartograms
by Numerically Optimized Meshes

Robert C. Sargent

November 26, 2024

Abstract
We present an algorithm for creating contiguous cartograms us-

ing meshes. We use numerical optimization to minimize cartographic
error and distortion by transforming the mesh vertices. The vertices
can either be optimized in the plane or optimized on the unit sphere
and subsequently projected to the plane. We also present a hybrid
“best of both worlds” method, where the vertices are optimized on the
sphere while anticipating the distortion caused by the final projection
to the plane. We show a significant improvement in the preservation
of region shapes compared to existing automated methods. Outside
the realm of cartograms, we apply this hybrid technique to optimized
map projections, creating the Liquid Earth projection.

Thanks to Dr. Lawrence Washington for mentorship, encouragement, and
feedback. Thanks to Justin Kunimune for encouragement, feedback, and
programming help.

1 Introduction

Cartograms are data visualizations where each data point is represented as
the area of a region. There are many different types of cartograms and

1

algorithms for creating them, including manual methods. (For a comprehen-
sive list of cartogram types and algorithms, see [11].) This paper presents
an algorithm for generating continuous cartograms (also called contiguous
or deformation cartograms), which continuously deform an existing map so
that the region areas match the data points. We focus on world maps of
countries with area representing population, but the techniques in this paper
are applicable to cartograms of subnational divisions as well, and with areas
representing any desired data.

Our algorithm works by projecting the globe onto a mesh of triangles.
We project the globe onto what we call the initial mesh, then transform the
map by moving the mesh vertices to those of the transformed mesh (fig. 1).
We generate the transformed mesh so that the end result is a cartogram with
minimal distortion.

Figure 1: Part of the initial mesh and transformed mesh. Notice how the movement
of the mesh vertices shrinks Ireland and Iceland.

To do this, we use numerical optimization, that is, finding a minimum
of a multivariable function. We define a cost function whose inputs are the
vertices of the transformed mesh. The cost function quantifies the total car-
tographic error (differences between the areas of regions and their desired
values) and the total distortion. A local minimum of this function is an
accurate cartogram with minimal distortion. The definition of this func-

2

tion depends on which version of the cartogram algorithm we use, as well as
several hand-chosen parameters. For example, we choose to prioritize distor-
tion of land much higher than distortion of water; we do this by giving the
distortion of land triangles higher weight in the cost function.

Two key existing algorithms for automatic cartogram creation are the
diffusion method of Gastner and Newman [3] and the rubber sheet method
of Dougenik, Chrisman, and Niemeyer [2]. The diffusion method works by
imagining the map is filled by a fluid whose density at each point corresponds
to population density, then letting the fluid diffuse to equal density. The
rubber sheet method applies expansion and contraction functions to the plane
with effects centered at each region, repeating the process a small number of
times until the cartogram is accurate.

Though these methods can produce accurate cartograms, the resulting
maps have more distortion than necessary. For example, an island country
can be given the desired area by scaling the region up or down, without
distorting its shape at all. However, existing algorithms cannot avoid intro-
ducing distortion in this situation. Because the method we present is specif-
ically based on minimizing distortion, it is capable of avoiding distortion in
this and other situations (fig. 2).

3

Figure 2: Comparison of shape preservation between the rubber-sheet method
(left) and our mesh method (right). The mesh method preserves shapes as much
as possible while preserving the connections (or near-connections) to adjacent land-
masses. Rubber-sheet examples created with the program F4Carto by Sun [15].

Another issue with existing methods is that, with the exception of [8],
they act only on the plane, not the sphere. This means that the globe
must be projected to the plane before running the cartogram algorithm.
This projection step bakes in distortion that the cartogram algorithm cannot
correct. By contrast, our algorithm uses a spherical representation of the
globe to calculate distortion, avoiding this problem. Li and Aryana [8] present
a diffusion algorithm that acts on the sphere, producing a cartogram on
a globe. However, a final projection step is needed to produce a planar
cartogram, which introduces distortion.

Though our algorithm significantly improves on these points, it has a
clear disadvantage in runtime. Though the aforementioned algorithms take
only seconds or minutes to run [4], ours can take multiple hours. This is a
hit to the practicality of our method. Optimizing the algorithm further is a

4

potential area of future research.
The use of numerically optimized meshes for cartography has been ex-

plored by Kunimune ([6], [7]) and by Loncaric [9] in the context of map
projections. Kronenfeld [5] develops a method for manually constructing
mesh-based cartograms. His method differs from ours in that, while we fix
an initial mesh and optimize the transformed mesh, he fixes a transformed
mesh and edits the initial mesh. This approach is helpful for dealing with
small, population-dense regions ([5] pp. 81–82). However, if we varied the
initial mesh as he does, our cost function would not be differentiable, which
would make numerical optimization infeasible. Instead, we deal with small,
dense regions by adding more detail to the initial mesh before generating the
cartogram (fig. 3).

Figure 3: The initial mesh before and after subdivision.

We present three different versions of our cartogram algorithm. The first
is the plane cartogram (fig. 4), in which the mesh vertices are projected to the
plane before the cost function is minimized. Because the mesh is cut before
the optimization happens, the boundary of the final map is irregular, and
there may be self-intersections at the boundary. This method is the most
similar to [6].

5

Figure 4: A plane cartogram.

The second version is the sphere cartogram (fig. 5). For this cartogram,
the cost function takes in the positions of vertices on the unit sphere. Min-
imizing the cost function yields an accurate cartogram on the sphere. Since
viewing a cartogram on a sphere is impractical, we then project the sphere
to the plane using an equal-area map projection. The final projection step
causes shape distortion. Since we optimize the cartogram on the sphere,
topological problems are impossible. The boundary of the final map is regu-
lar; its shape is a consequence of the projection chosen.

6

Figure 5: A sphere cartogram shown in orthographic view and projected using the
Mollweide projection.

Finally, the third version is the hybrid cartogram (fig. 6). Similarly to the
sphere cartogram, it minimizes the cost function on the sphere, then projects
the result to the plane. However, instead of calculating the distortion on the
sphere, it anticipates how the mesh triangles will be transformed by the final
projection and calculates distortion based on that. Minimizing this distortion
function creates a cartogram that has minimal distortion after projection to
the plane. As a result, the hybrid cartogram has the low distortion of the

7

plane cartogram, while keeping the topological soundness and clean boundary
of the sphere cartogram. We call the final projection from the sphere to
the plane the target projection, because the optimization is done with this
projection in mind.

Figure 6: A hybrid cartogram whose target projection is Mollweide.

The technique used to create hybrid cartograms is also useful for creating
new map projections. Kunimune ([6], [7]) prioritizes land distortion over
water distortion to create some of the Danseiji and Elastic projections, as
we do in our cartograms. However, he does his optimization on the plane.
As with the hybrid cartogram, we can optimize a map projection on the
sphere while anticipating the distortion caused by the final projection to the
plane. This enables us to create a map projection that has exceptionally low
distortion on land and whose boundary has a regular, familiar shape. Figure 7
is a particularly good result of this process; I have released it independently
as the Liquid Earth projection [12].

8

Figure 7: The Liquid Earth projection, an approximately equal-area map projec-
tion created by the hybrid technique. The target projection is Equal Earth.

Section 2 gives a high-level overview of the algorithm we present. Sec-
tion 3 gives a complete definition of the cost function used to create the plane
cartogram, and shows how to compute its gradient. The cost functions for
the sphere and hybrid cartograms are modifications of the one for the plane
cartogram; we describe these modifications in sections 4 and 5. Section 6
quantifies the accuracy and runtime of the algorithm. We give final remarks
in section 7.

The source code for our algorithm is available at https://github.com/
rsargentmath/cartogram-gradient-descent.

2 Algorithm overview

Throughout this paper, we use a right-handed coordinate system. Anticlock-
wise is the positive direction for both angles and polygons, including mesh
triangles. The globe is always represented as the unit sphere, with the North
Pole at (0, 0, 1).

A cartogram is based on a set of regions R, in practice either countries

9

https://github.com/rsargentmath/cartogram-gradient-descent
https://github.com/rsargentmath/cartogram-gradient-descent

or subnational divisions. Each region is a nonempty set of polygons on the
unit sphere S2 ⊆ R3. (None of these polygons overlap, whether they’re in
the same region or different regions.) The boundaries of these polygons are
called borders. Each region R ∈ R has a number rR > 0 associated with it,
e.g., that country’s population. These are the data the cartogram is trying
to visualize. To be usable in the cartogram algorithm, we need to translate
these values into areas we want the transformed regions to have. We define
the desired area of each region by scaling the values rR so that the total of
the desired areas equals the total of the initial areas:

pR = rR

∑
S∈R

◦
µS∑

S∈R rS
,

where ◦
µS is the initial area of S. In a slight abuse of terminology, we call the

desired area pR the population of R.
A mesh consists of an array of vertices V and an array of triangles T .

The triangles in T do not contain vertices, rather, they are triples of indices
into V . This enables each vertex to be shared between multiple triangles.
The choice to use triangles for our meshes differs from Kunimune ([6], [7]),
who uses quads. We use triangles because the affine function that maps
an initial triangle onto a transformed triangle scales all regions within the
triangle evenly. This means only the portion that each region takes up of each
triangle is needed to calculate the areas of transformed regions, as described
below.

To create the specific mesh used in this paper, we start with a regular
octahedron, then divide each face into 1024 triangles of roughly equal size,
resulting in a mesh of 8192 triangles. After that, we subdivide the mesh
further based on the borders and populations. We subdivide so that each
region is covered by at least four triangles, and so triangles are expanded to
at most 1/2048 of the sphere’s area. We also subdivide once at international
borders and near the North Pole. The final mesh has 15396 triangles. The

10

choice of an octahedron makes it easy to interrupt the map along a meridian,
where two opposing vertices of the octahedron correspond to the poles.

The algorithm starts with a mesh
(◦
V , T

)
on the sphere, representing the

undistorted initial state of the globe. We project the borders onto this mesh
radially. (Though this projection slightly distorts area, no cartographic error
can be introduced here, because both the area calculation and the final map
are based on these projected borders.) The algorithm outputs a new array of
vertices V , forming a mesh (V , T) where each triangle from the original mesh
now references the new vertices. The final cartogram is created by projecting
the borders from the original mesh to the new one. For each triangle, we use
the unique affine transformation from the old triangle to the new one.

We want this process to result in an accurate cartogram that has minimal
distortion. To achieve this, we use numerical optimization applied to a cost
function C whose input is an array of vertices V . This function incorporates
the cartographic errors (differences between the transformed areas of regions
and their desired areas) as well as the total distortion of the map, which
can be defined in various ways. The final vertices V are a local minimum
of the function C. By adjusting the definition of C, we have fine control
of the properties of the final cartogram. For example, we can weight scale
distortion more or less heavily, and weight distortion of land more heavily
than distortion of water.

To minimize C(V), we start with an initial state V0, then step iteratively
in the direction of lower cost until a local minimum is reached. For the sphere
and hybrid cartograms, we simply set V0 =

◦
V . For the plane cartogram, this

initial state needs to be in the plane. To do this, we modify the initial
mesh

(◦
V , T

)
so that the vertices on the antimeridian (excluding poles) are

duplicated, then create V0 by projecting these vertices to the plane, using a
projection that interrupts the antimeridian. Each pair of duplicated vertices
in

◦
V is separated by the interruption; these vertices form the outer edge of

V0.

11

Suppose n is the number of vertices in V and d is the dimension of each
vertex (2 or 3). For the purpose of minimizing C(V), we view V as a single
vector in Rnd instead of a tuple of vectors in Rd. With this view, the gradient
vector ∇C(V) is also an element of Rnd. The minimization algorithm we
choose is L-BFGS [10] with backtracking line search [1], as was used by
Kunimune [6]. This is a standard algorithm that works by computing and
storing the gradient at each step, and using the gradients at the last few
steps to choose the next step. The line search tries this step and computes
its cost. If the cost does not decrease enough, or increases, it rejects the step
and tries a smaller step. In particular, the line search always rejects a step
if it leads to infinite cost.

In order to avoid states with infinite cost, C must be continuous in the
following sense. For any input V∗ to C, we must have limV→V∗ C(V) = C(V∗),
including in the case where C(V∗) = ∞. If this fails and there are points
where C(V) discontinuously jumps to ∞, then the optimization algorithm
can get stuck, because it has no way of steering around the disallowed states,
despite knowing not to accept them.

Let E(V) be the total cartographic error and let D(V) be the total distor-
tion. The definitions of E and D depend on both the type of the cartogram
(plane, sphere, or hybrid) and various chosen weights, as described in this
and following sections. We define maps with topological problems, such as
having a triangle flipped over, to have infinite distortion; this ensures that
the final output will not have these problems. The goal is to have E(V) as
close to zero as possible (so that the cartogram is accurate) while minimizing
D(V) subject to this constraint. Achieving this is complicated by the fact
that the initial state of the map does not satisfy E(V) = 0.

Our algorithm works by setting

C(V) = W error E(V) +W distD(V),

where W error,W dist ∈ R are positive weights. We minimize C(V) multiple

12

times, each time prioritizing cartographic error higher by lowering W dist. The
output of one step becomes the starting point of the next step’s minimization.
This way, the total cartographic error gets closer and closer to zero while
distortion is still minimized. This process is reminiscent of the interior-point
method from numerical optimization. (We cannot set W dist to zero because
D is responsible for maintaining the topology of the map.)

We define E as follows. Let µR be the transformed area of a region R,
which depends on the transformed vertices V . (The method for computing
µR depends on the type of the cartogram.) The cartographic error of R is
εR = µR − pR. We define

E(V) =
∑
R∈R

werror
R ε2R,

where (werror
R)R∈R is a family of positive weights. The function E attains a

minimum of 0 precisely when µR = pR for all regions R, as desired. These
weights allow us to choose between minimizing absolute error, given by µR−
pR, and relative error, given by (µR − pR)/pR. If werror

R = 1/p2R, then E(V) is
the summed square relative error. For the cartograms in this paper, we split
the difference and choose werror

R = 1/pR, since the extreme values given by
werror

R = 1/p2R cause floating-point issues.
The total distortion D(V) is computed by summing the scale distortion

and shape distortion over all triangles T ∈ T . As with cartographic er-
ror, we include arbitrarily chosen weights. This function may also include
terms unrelated to these two types of distortion. For example, the plane
cartogram described in section 3 includes terms that prevent the map from
having self-intersections at the poles. We give definitions for the scale and
shape distortions at a triangle based on cartogram type (plane, sphere, or
hybrid) in the following sections.

13

3 Cost function for plane cartograms

In this section, we fully define the cost function for the plane cartogram and
show how to compute its gradient. The cost and gradient calculations for
the sphere and hybrid cartograms are based on those for the plane, with the
necessary modifications.

For each triangle T and region R, we let ψR,T be the portion R takes up
of T , that is,

ψR,T =
area(R ∩ T)

area(T)
.

Since the maps from the initial mesh triangles to the transformed triangles
are affine, the values ψR,T do not depend on V . These constants are all we
need to compute the transformed area of each region; there is no complicated
dependence on the geometry of the regions. We also compute the portion
land takes up of each triangle T , given by ψT =

∑
R∈R ψR,T .

For each triangle T , let ◦aT ,
◦
bT ,

◦cT ∈
◦
V be the untransformed positions of

the three vertices referenced by T , and let aT ,bT , cT ∈ V be their transformed
positions. For simplicity, we suppress T and write ◦a,

◦
b, ◦c, a,b, c. To define the

distortion at T , we need to define the distortion of the affine transformation
that takes ◦a,

◦
b, ◦c to a,b, c respectively. Note that ◦a,

◦
b, ◦c ∈ R3 while a,b, c ∈

R2. Let
◦
B be an orthonormal basis for the plane parallel to the triangle ◦a,

◦
b, ◦c.

Then we can analyze this transformation by looking at the 2 × 2 matrix K

taking (
◦
b− ◦a)◦

B
, (

◦c− ◦a)◦
B

to b− a, c− a respectively. This matrix is given by

K = G
◦
G−1, (1)

where

◦
G =

| |

(
◦
b − ◦a)◦

B
(
◦c − ◦a)◦

B
| |

 , G =

 | |
b − a c − a
| |

 . (2)

Since the distortion of a transformation should not be affected by rotation,

14

the choice of
◦
B does not matter as long as it is correctly oriented (in the

sense that it gives
◦
G a positive determinant). These matrices also allow us

to compute the initial area ◦
m and transformed area m of T :

◦
m =

1

2
det

◦
G, m =

1

2
detG =

◦
m detK. (3)

There are many ways to define the distortion of a 2 × 2 matrix. The
definition chosen by Kunimune [6] has two problems for use in cartograms:
(a) one term represents both scale distortion and shape distortion, when
we need these to be separate; (b) the scale distortion term, which is the
squared log of the scale factor, does not adequately punish the extreme scale
distortions that can arise in cartograms. We give a definition that fixes these
problems and makes the gradient simple to compute.

Let A =

[
a b

c d

]
be any real 2× 2 matrix. We define the shape distortion

of A to be
a2 + b2 + c2 + d2

ad− bc
− 2 ad− bc > 0

∞ else.

(In practice, such inequality checks are always implemented with a tolerance
to compensate for floating-point error, e.g., checking ad− bc > 10−12 instead
of ad − bc > 0. For simplicity, we ignore this throughout this paper.) To
justify this definition, notice that this fraction is the square of the Frobe-
nius norm of A divided by the determinant of A. Both of these values are
invariant when multiplying A by a rotation matrix on the left or right side.

Thus, if R2

[
σ1 0

0 σ2

]
R1 is a singular value decomposition of A (R1, R2 rota-

tion matrices), then the shape distortion of A equals the shape distortion of

15

[
σ1 0

0 σ2

]
. If detA = σ1σ2 > 0, then this equals

σ2
1 + σ2

2

σ1σ2
− 2 =

σ1
σ2

+
σ2
σ1

− 2.

This value is minimized at zero precisely when σ1 = σ2, i.e., when A is
a multiple of a rotation matrix. The constant term has no effect on the
algorithm’s outcome; its only purpose is cosmetic, ensuring that the shape
distortion of a conformal transformation is measured as 0 instead of 2. We
denote the shape distortion of our matrix K by δshape.

Note that, while we used the singular values to explain this definition,
they are not necessary for computing this value. The distortion is given sim-
ply in terms of the matrix entries, which makes cost and gradient calculation
easier. ([9] defined the same distortion function, but gave it only in terms
of the singular values.) An important characteristic is that, when fixing σ1,
this function is convex in σ2, and vice versa. This property is important
to prevent “necking” artifacts in the final map, where some triangles are
near-perfect while others are extremely stretched [6].

We define the scale distortion at this triangle in a similar way. We choose
a value s to be the intended scale for this triangle. Then we let the scale
distortion be

δscale =

detK
s

+
s

detK
− 2 detK > 0

∞ else.

This is minimized at zero precisely when detK = s. Note that the inequality
check is the same for both δshape and δscale.

If a triangle T is taken up entirely by one region R, then it’s clear that the
intended scale of T should equal the desired scaling of R, i.e., sT = pR/

◦
µR,

16

where ◦
µR is the initial area of R. For any region R, we compute ◦

µR by

◦
µR =

∑
T∈T

ψR,T
◦
mT . (4)

In the general case where T intersects at least one region, possibly including
water as well, we choose an average of these values, weighted by how much
of each region appears in T :

sT =
∑
R∈R

ψR,T

ψT

· pR◦
µR

.

The remaining case is when T contains entirely water, i.e., when ψT = 0. In
this case, it is not immediately clear how to choose sT . For the cartograms in
this paper, we blur the intended scale values across the mesh so that triangles
with ψT = 0 take on the values of nearby triangles, leaving triangles with
ψT > 0 unaffected. This improves the regularity of the mesh near coastlines.

Using (3), we can compute the transformed area µR of a region R, similar
to (4):

µR =
∑
T∈T

ψR,T mT =
∑
T∈T

ψR,T
◦
mT detKT .

Thus, the total cartographic error is

E(V) =
∑
R∈R

werror
R ε2R,

where
εR = µR − pR =

[∑
T∈T

ψR,T
◦
mT detKT

]
− pR.

We define the total distortion D(V) by

D(V) =
∑
T∈T

◦
mT

(
wshape

T δshape
T + wscale

T δscale
T

)
, (5)

17

where (wshape
T)T∈T and (wscale

T)T∈T are families of positive weights. We mul-
tiply by ◦

mT because distortion should be punished more if it affects a larger
area.

The choice of weights for distortion has a large effect on the look of the
final cartogram. For our cartograms, we incorporate both the presence or
absence of land and the intended scale into these weights. To do this, we
define auxiliary weight values that we multiply to obtain the final weights.
We weight triangles that are entirely water much less than triangles that
contain land, defining

αland
T =

1 ψT > 0

0.1 else.

Triangles that are mostly water but contain some of a region border should
still receive full weight, because they are key to maintaining the visual shapes
of regions. A small but significant weight on entirely-water triangles is still
necessary to maintain the relative positions of regions and to avoid topolog-
ical problems.

In (5), we multiply each triangle T ’s distortion by ◦
mT , its initial area.

This means that the distortion of a region is judged using that region’s size
on the globe, not its size on the final map. In practice, this causes low–
population density regions to be privileged over dense ones, e.g., leaving
Canada mostly undistorted while the US warps to accommodate it. It would
make more sense to judge distortion based on a triangle’s final area. However,
we can’t just replace ◦

mT with mT in (5), because that would incentivize high-
distortion triangles to shrink! To get around this, we include a weight factor
based on each triangle’s intended scale sT instead. So that very low-density
areas are not completely ignored, we set

αdensity
T = 0.2 + 0.8sT .

Lastly, we choose how we weight shape distortion and scale distortion

18

overall. For our cartograms, we choose

αshape = 0.5, αscale = 0.2.

For unclear reasons, higher values of αscale cause much longer runtimes, as
the optimization takes many more steps to find a local minimum. Lower
values improve runtime, but cause aesthetic problems. The given values are
a compromise.

We define the final weights by

wshape
T = αshape αland

T αdensity
T , wscale

T = αscale αland
T αdensity

T .

With this, we have given a complete definition of the error and distortion
functions for the plane cartogram. However, using this definition unmodified
for the plane cartogram fails to prevent self-intersections at the poles. This is
not an issue for the sphere and hybrid cartograms, so to keep the discussion
generally applicable, we momentarily ignore this problem and proceed with
the gradient calculation.

Recall that C(V) = W error E(V) +W distD(V), so

∇C(V) = W error ∇E(V) +W dist ∇D(V),

as long as C(V) <∞. Expanding this,

∇E(V) = ∇
[∑
R∈R

werror
R ε2R

]
= 2

∑
R∈R

werror
R εR ∇εR,

∇εR = ∇µR = ∇
[∑
T∈T

ψR,T
◦
mT detKT

]
=

∑
T∈T

ψR,T
◦
mT ∇(detKT).

19

Rearranging,

∇E(V) = 2
∑
R∈R

werror
R εR

[∑
T∈T

ψR,T
◦
mT ∇(detKT)

]
= 2

∑
T∈T

[∑
R∈R

werror
R εR ψR,T

]
◦
mT ∇(detKT).

Furthermore,

∇D(V) = ∇
[∑
T∈T

◦
mT

(
wshape

T δshape
T + wscale

T δscale
T

)]
=

∑
T∈T

◦
mT

(
wshape

T ∇δshape
T + wscale

T ∇δscale
T

)
,

so

∇C(V) = 2W error
∑
T∈T

[∑
R∈R

werror
R εR ψR,T

]
◦
mT ∇(detKT)

+W dist
∑
T∈T

◦
mT

(
wshape

T ∇δshape
T + wscale

T ∇δscale
T

)

=
∑
T∈T

◦
mT

[
2W error

[∑
R∈R

werror
R εR ψR,T

]
∇(detKT)

+W dist(wshape
T ∇δshape

T + wscale
T ∇δscale

T

)]
.

(6)

Since δshape
T , δscale

T , and (detKT) are defined in terms of the entries of KT ,
their derivatives (with respect to each component of V) are simple to compute
from the entries of KT and its derivatives. Finally, when differentiating with
respect to each component of V ,

K ′
T = (GT

◦
G−1

T)′ = G′
T

◦
G−1

T ,

since
◦
GT is constant. The matrix G′

T is immediate from (2); for example,

20

the derivative of GT with respect to the x component of aT is

[
−1 −1

0 0

]
.

Each triangle is only affected by the three vertices it references. This
means that each element of the outermost sum in (6) has at most six nonzero
components, namely the derivatives with respect to the components of the
three vertices of that triangle. When computing ∇C(V) in code, we compute
these six derivatives for each triangle T , then place them at the vertex indices
referenced by T .

This cost function definition and gradient computation also work for the
sphere cartogram. As described in section 4, the only changes necessary are
(a) the dimension of the vectors in V ; (b) the definition of the matrices KT .
We now describe a modification necessary to prevent the plane cartogram
from self-intersecting; this modification does not apply to the sphere or hybrid
cartograms.

The self-intersection issue is worst at the South Pole, caused by Antarctica
contracting. The land around the pole is shrank nearly to a point, while the
surrounding water is shrank less. This situation makes the mesh behave
like a negatively-curved surface, causing the angle at the pole to expand far
past 360 degrees (fig. 8). (Whether or not the cartogram actually represents
country populations, Antarctica will likely have a data value near zero. This
value cannot be exactly zero because that leads to division by zero. For our
cartograms, we use an estimate of the temporary population of Antarctica,
which has a small nonzero value.)

21

Figure 8: A large self-intersection caused by Antarctica contracting.

To prevent this problem, we add a term to the definition of D(V) that
compares the x coordinates of vertices on the boundary to those of the poles.
Points in the lower-right quadrant of the boundary are be required to be to
the right of the South Pole, while those in the lower-left quadrant must be
to its left. We do the same for the North Pole.

We define the sets Q0, Q1, Q2, Q3 ⊆ V of boundary vertices as in fig. 9,
along with the poles pnorth,psouth ∈ V . We define a cost value for the bound-
ary by

δboundary =
∑
v∈Q0

1

vx − pnorth
x

+
∑
v∈Q1

1

pnorth
x − vx

+
∑
v∈Q2

1

psouth
x − vx

+
∑
v∈Q3

1

vx − psouth
x

,

with δboundary := ∞ if any of these denominators is not positive. We then
modify the distortion function (5) to be

D(V) =
[∑
T∈T

◦
mT

(
wshape

T δshape
T + wscale

T δscale
T

)]
+ wboundaryδboundary.

We set wboundary to be quite small, specifically 10−6, so that it only has an ef-

22

fect when a boundary point is very close to crossing over. The corresponding
modification to ∇D(V) is straightforward.

Figure 9: The sets of boundary vertices Q0, Q1, Q2, Q3 and the vertices pnorth and
psouth. Mesh resolution reduced for clarity.

This addition does not prevent all self-intersections in the final map, but
it avoids a common and severe case. The sphere and hybrid cartograms do
guarantee a lack of topological problems by construction.

4 Sphere cartograms

While the transformed vertices in the plane cartogram are in R2, the trans-
formed vertices in the sphere cartogram are in S2 ⊆ R3. The borders in each
triangle are mapped using the affine function taking the initial vertices ◦a,

◦
b, ◦c

to the transformed vertices a,b, c, then projected radially onto S2.
Care must be taken when adapting the cost function for the sphere. With

this radial projection to the sphere, the maps from the initial triangles to the
transformed triangles of the cartogram are no longer affine. In order to
measure distortion using the methods in section 3, we need to choose affine
approximations of these maps. The obvious choice is to ignore the projection
to the sphere and just look at the map from ◦a,

◦
b, ◦c to a,b, c. However, this

results in the cost function being discontinuous. Points that are collinear on

23

the sphere are in general not collinear in R3, so if a triangle is in the process
of flipping over, it maintains significant positive area right up until it flips.
This causes the shape and scale distortion values to discontinuously jump to
infinity. The option we choose instead is to project the transformed triangle
onto the tangent plane at its midpoint, then calculate distortion based on
this projected triangle.

Define the function nzd (“normalized”) by nzd(v) = v
‖v‖ . Let a,b, c be

the transformed vertices of some fixed triangle. We define the midpoint of
this triangle to be

n = nzd
(

a + b + c
3

)
= nzd(a + b + c). (7)

We project a,b, c perpendicularly onto the tangent plane to the sphere at n,
yielding the points atp,btp, ctp. The point atp is given by

atp = a + (1− a · n)n,

with btp, ctp given similarly. Finally, we modify the definition of the matrix
K [(1) and (2)] by setting

G =

 | |
(btp − atp)B (ctp − atp)B

| |

 , (8)

where B = (B1,B2) is a correctly oriented orthonormal basis for the plane
parallel to this tangent plane. (Since

◦
G is constant, there is no need to modify

its definition in a similar way.)
The area of the planar triangle (atp,btp, ctp) is not quite equal to the area

of the spherical triangle (a,b, c), and the radial projection to the sphere is
not area-equivalent, so a small amount of cartographic error is introduced.
We estimate this error in section 6.

The basis B is dependent on the tangent plane at n, which depends on

24

a,b, c. Since B is not constant as the mesh vertices vary, we must give a
fixed definition for it and pay attention to how it moves. We choose B to
align with the longitude–latitude graticule, meaning that B1 points east and
B2 points north. This choice is convenient when defining hybrid cartograms
(section 5). (If n is at a pole, we choose B arbitrarily.) With this choice
made, it is possible to describe each component of G directly in terms of
a,b, c, and use those formulas to calculate the gradient of the cost function.
However, it is simpler to calculate the gradient with respect to atp,btp, ctp,
then use the chain rule to find the gradient in terms of a,b, c, as described
below.

Notice that, if atp, btp, or ctp were to vary in the direction perpendicular
to the tangent plane, this would have no first-order effect on the distortion
of the triangle (atp,btp, ctp). This means that, when computing the gradient,
we only need to consider the movement of these points within the tangent
plane. As for the basis, notice that as the midpoint n varies in the east–west
direction, B rotates so that the second basis vector points points towards
the North Pole. This is a first-order effect, so it affects the derivatives of
G. However, our area and distortion calculations are unaffected by rotation.
Thus, when computing the gradient of the cost, we can view both the tangent
plane and the basis as fixed. If the rotation of G does matter, as in the case
of the hybrid cartogram, we correct for this after the fact, as described in
section 5.

Since we view atp,btp, ctp as varying within a fixed plane, the computa-
tions for the derivatives of detK, δshape, and δscale—with respect to these
vertices moving along B1 and B2—are the same as the corresponding compu-
tations for the plane cartogram. The resulting gradient vectors are expressed
in the basis B; we then use B to express them in global coordinates. Finally,
we use the chain rule to find the derivatives of detK, δshape, and δscale with
respect to the components of a, b, and c. This involves finding the derivatives
of atp,btp, ctp with respect to each of these components. Let d = a + b + c.

25

To find each of these derivatives, we compute

d′ = a′ + b′ + c′,

n′ = nzd(d)′ =
(

d
‖d‖

)′

=
(
(d · d)−1/2 d

)′
= −1

2
(d · d)−3/2 2(d · d′)d + (d · d)−1/2 d′

= −(d · d)−3/2 (d · d′)d + (d · d)−1/2 d′.

Then

(atp)′ =
(
a + (1− a · n)n

)′
= a′ − (a′ · n + a · n′)n + (1− a · n)n′,

and similarly for (btp)′ and (ctp)′. Notice that each of atp,btp, ctp depends on
all of a,b, c.

It remains to discuss how to actually carry out this optimization when
the mesh vertices’ domain is the sphere. In our implementation, we represent
the vertices with 3D Cartesian coordinates, as we do mathematically. After
each step (in the search direction provided by L-BFGS), we normalize each
vertex back onto the sphere. Explicitly, if V = (v0, . . . , vn−1) is the current
vertex array (vi ∈ S2 ⊆ R3), and S = (s0, . . . , sn−1) is the step produced by
L-BFGS and the line search, then the next positions of the mesh vertices,
Vnext = (vnext

0 , . . . , vnext
n−1), is given by vnext

i = nzd(vi + si) for all i. This
normalization step introduces a small challenge in the implementation.

The line search is a standard part of the optimization algorithm. The
program tries the step suggested by L-BFGS and compares the resulting
reduction in cost to the reduction that is expected based on the gradient. If
the cost increases or the reduction is otherwise too small, we try again with
a smaller step. This is repeated until an acceptable step is found. Viewing

26

V , Vnext, ∇C(V), and S as vectors in R3n, we define S to be acceptable if it
satisfies Armijo’s condition [1]:

C(Vnext)− C(V) ≤ c
(
S · ∇C(V)

)
, (9)

where c ∈ (0, 1) is a constant (we choose 0.1).
If there is no normalization, then we are guaranteed to find a step satis-

fying (9), since S ·∇C(V) is a first-order approximation for C(V +S)−C(V)
as S varies, by the definition of the gradient. However, the normalization
step causes a problem. The gradient ∇C(V) can direct points to move off
the sphere, in which case the step S will likely move points off the sphere.
When these points are normalized, the reduction in cost is smaller than is
expected based on S (fig. 10). If S and ∇C(V) have significant off-sphere
components, then (9) may not be satisfied no matter how small S is chosen
to be. If this happens, the line search cannot find an acceptable step, and
the algorithm fails.

Figure 10: How normalizing vertices changes the cost reduction. The shading
represents cost as vi varies, with blue representing higher cost.

To fix this problem, we modify the gradient before it’s passed into the
optimization algorithm. Write ∇C(V) = (g0, . . . , gn−1). We remove the
off-sphere component from each gi, defining the modified gradient G(V) =

27

(g̃0, . . . , g̃n−1) by
g̃i = gi − (gi · vi) vi.

We then pass G(V) into the optimization algorithm in place of ∇C(V). In
particular, we use G(V) in place of ∇C(V) in (9). Then the off-sphere com-
ponent of S no longer contributes to the dot product in (9), so we can always
satisfy the condition with a sufficiently small step. Modifying the gradient in
this way means there is no need to modify the optimization algorithm, with
the exception of including the normalization step.

If the reader wants to build their own implementation, and modifying the
optimization algorithm to include this normalization step is not an option,
a possible approach is to represent the mesh vertices with two coordinates
each by parametrizing the sphere. Any parametrization of the sphere has at
least one singularity, which could cause problems with this approach. One
option is to choose a different parametrization for each vertex, so that the
singularity for each vertex is opposite its original position, making it very
unlikely for problems to arise.

5 Hybrid cartograms

To create the hybrid cartogram, we calculate distortion based on how a
triangle is transformed after it is projected to the plane (using a fixed equal-
area projection). To describe this, we need the Jacobian matrix of this map
projection at each point on the sphere. Let ω : S2 → R2 be the target
projection. To represent the total derivative of ω as a matrix, we parametrize
S2 using longitude and latitude, denoted λ and ϕ respectively. The point on
S2 referenced by λ, ϕ is

(
cosϕ cosλ, cosϕ sinλ, sinϕ

)
.

28

Using this parametrization, we view ω as a map [−π, π]× [−π/2, π/2] → R2.
At each point p ∈ S2, we choose the basis for the tangent space at p to
align with the graticule, as we did in the previous section. Then, writing the
output of ω as (x, y), if p has the coordinates λ, ϕ, then the Jacobian matrix
of ω at p is given by

Jω(p) =

1

cosϕ
∂x

∂λ

∂x

∂ϕ

1

cosϕ
∂y

∂λ

∂y

∂ϕ

 .

For use in the cost function, we measure the Jacobian at the center point
of each triangle. Unfortunately, Jω(p) jumps discontinuously as p crosses
an interruption of the projection. In particular, for the pseudocylindrical
projections we use, Jω is discontinuous along the antimeridian. Since the cost
function must be continuously differentiable, we blur Jω near the interruption.
Specifically, we choose a continuously differentiable function H : S2 → R2×2

such that H(p) = Jω(p) unless p is close to the interruption, and use H(p) in
place of Jω(p) when calculating distortion.1 We omit the specific definition
of H.

We only take H into account when calculating shape distortion, leaving
the scale distortion and area calculations unaffected. This means there is no
need to ensure that H(p) always has determinant 1. (Since ω is equal-area,
Jω(p) always has determinant 1, but the blur can change this.) For each

1Because we choose bases for the tangent spaces to align with the longitude/latitude
graticule, and this graticule has singularities at the poles, it is not sufficient to simply
have H continuously differentiable as a function S2 → R2×2. The correct condition is as
follows. Instead of viewing H(p) as a member of R2×2 for each p, we can say that H(p)
is a linear map TpS2 → TpS2, where TpS2 is the tangent space at p. Suppose that B(p)
is a basis for TpS2 for each p. Then, using B(p), we can view each H(p) as a linear map
HB(p) : R2 → R2. This creates a function HB : S2 → R2×2. The condition we need is that
HB must be continuously differentiable for any smooth choice of bases B(p) (defined over
any subset of S2). In practice, we achieve this by choosing H(p) to be the identity when
p is a pole.

29

triangle, we multiply the output of H by the matrix K [(1), (2), and (8)],
defining

K̃ = H(n)K,

where n is the midpoint of the triangle, given by (7). The matrix K̃ ap-
proximately represents the map taking the initial triangle (

◦a,
◦
b, ◦c) to the

projected triangle
(
ω(a), ω(b), ω(c)

)
. We use K̃ to calculate δshape, with the

scale distortion and area just using K as before.
Recall that when n moves in the east–west direction, the basis for the

tangent space at n rotates, and that we ignore this effect when doing the cal-
culations in section 4. The rotation of the basis has the effect of multiplying
K by a rotation matrix on its left (see fig. 11). Since H(n) is subsequently
multiplied on the left, this has a non-rotational effect on K̃, so it must be
taken into account when calculating the gradient.

Figure 11: The effect on the local basis caused by moving east in the Northern
Hemisphere. Orange represents the result of moving the basis at n0 without rotat-
ing it, as we do in section 4. From the perspective of the graticule-aligned basis
(blue), moving east causes a clockwise rotation.

For the purpose of finding derivatives, we call the current midpoint of the
triangle n0 and view the midpoint n as varying in the tangent plane at n0.
We write n = n0+uB1+vB2, u, v ∈ R, where B = (B1,B2) is the orthonormal

30

basis for the tangent space at n0. Since the notational distinction between n0

and n is just for the purpose of taking derivatives, all of these derivatives are
evaluated at n = n0. We represent the induced rotation relative to the basis
vectors by the rotation matrix R(u, v). For example, in fig. 11, R(u, v) is a
clockwise rotation. The formula for K̃ (for the purpose of finding derivatives)
becomes

K̃ = H(n)R(u, v)K,

so each derivative of K̃ (evaluated at n = n0) is

K̃ ′ = [H(n)R(u, v)K]′

= [H(n)R(u, v)]′K + [H(n)R(u, v)]K ′

= [H(n)R(u, v)]′K + [H(n0)R(0, 0)]K
′

= [H(n)R(u, v)]′K +H(n0)K
′.

The calculations for K and K ′ are covered in the previous section, so it only
remains to find [H(n)R(u, v)]′.

It suffices to find the derivatives of H(n)R(u, v) with respect to u and
v; the derivatives with respect to the components of the triangle’s vertices
are then found using the chain rule. We can write H(p) = H(λ, ϕ) using
the usual parametrization of the sphere. Let λ0, ϕ0 be the coordinates cor-
responding to n0. The derivative with respect to v is simple:

∂

∂v
[H(n)R(u, v)]

∣∣∣
n=n0

=
∂H

∂v
(n0)R(0, 0) +H(n0)

∂R

∂v
(0, 0)

=
∂H

∂v
(n0) I +H(n0) 0

=
∂H

∂v
(n0) =

∂H

∂ϕ
(λ0, ϕ0),

since varying v (i.e., moving north–south) induces no rotation of the basis.

31

Deriving with respect to u, we have

∂

∂u
[H(n)R(u, v)]

∣∣∣
n=n0

=
∂H

∂u
(n0)R(0, 0) +H(n0)

∂R

∂u
(0, 0)

=
∂H

∂u
(n0) I +H(n0)

∂R

∂u
(0, 0)

=
1

cosϕ0

∂H

∂λ
(λ0, ϕ0) +H(λ0, ϕ0)

∂R

∂u
(0, 0), (10)

since a change in u is cosϕ0 times the corresponding change in the longitude
λ.

It remains to find ∂R

∂u
(0, 0). To find this, we view n as varying along the

latitude line at ϕ0. Having moved a distance of u along this line, the basis
B has rotated by some angle θ(u). Then we have

R(u, 0) =

[
cos(−θ(u)) − sin(−θ(u))
sin(−θ(u)) cos(−θ(u))

]
=

[
cos θ(u) sin θ(u)
− sin θ(u) cos θ(u)

]
.

The negation appears because R(u, 0) represents the rotation from the per-
spective of the basis. Then

∂R

∂u
(0, 0) =

∂

∂u

[
cos θ(u) sin θ(u)
− sin θ(u) cos θ(u)

] ∣∣∣∣∣
u=0

= θ′(0)

[
0 1

−1 0

]
. (11)

The value θ′(0) is the radians of rotation of the basis per distance travelled
along the latitude line. Since the basis is aligned with the line, this is the
radians of rotation of the line per distance travelled. By definition, this
is the geodesic curvature of this line. To find this value, we find the total
geodesic curvature of the latitude line using the Gauss–Bonnet theorem. The
area of the region of S2 enclosed (to the north) by the latitude line at ϕ0 is
2π(1−sinϕ0), and the Gaussian curvature of the unit sphere is 1, so the total
geodesic curvature is 2π − 1 · 2π(1− sinϕ0) = 2π sinϕ0. Since the length of

32

the latitude line is 2π cosϕ0, the geodesic curvature at each point is

2π sinϕ0

2π cosϕ0

= tanϕ0,

so θ′(0) = tanϕ0. Combining this fact with (10) and (11), we finally get

∂

∂u
[H(n)R(u, v)]

∣∣∣
n=n0

=
1

cosϕ0

∂H

∂λ
(λ0, ϕ0) + tan(ϕ0)H(λ0, ϕ0)

[
0 1

−1 0

]
.

This completes the calculation of the derivatives of K̃, which completes the
calculation of ∇C(V).

Unlike for the sphere cartogram, it does not make sense to manually
rotate the sphere after optimizing, because that would reintroduce distortion
that we worked hard to optimize away. This means that, if we want the
interruption to remain in a specific place, we must enforce this by modifying
the cost function. For our cartograms, we place the interruption at 169◦

west, through the Bering Strait. We rotate the borders so that the Cartesian
coordinates on this line satisfy y = 0, which makes it simple to compute the
deviation of points from this line.

We add a term to the definition of D(V) that measures the deviation
of points on the antimeridian from the interruption line. (Since the mesh
is based on an octahedron, there is a line of mesh vertices that falls on the
antimeridian.) We also add a term that fixes the North Pole in place. Let
M be the set of all vertices initially on the antimeridian (not including the
poles), and let pnorth be the vertex initially at the North Pole. We then

33

modify the definition of the total distortion (5) to be

D(V) =
∑
T∈T

◦
mT

(
wshape

T δshape
T + wscale

T δscale
T

)
+ wpole((pnorth

x)2 + (pnorth
y)2

)
+

∑
v∈M

wantimer
v v2

y,

where wpole and (wantimer
v)v∈M are nonnegative weights. We set wpole to be

very high so that the North Pole is fixed, which helps to maintain the shapes
of regions near the pole. We set wantimer

v highest for vertices in the north,
to ensure the interruption passes through the Bering Strait. We set wantimer

v

lower for vertices in the mid latitudes, and set wantimer
v = 0 around Antarctica.

To create the Liquid Earth projection (fig. 7), we simply ignore the car-
tographic error, minimizing D(V) instead of C(V). We set the intended scale
sT of each triangle to 1. We weight triangles than contain land 100 times
more than water triangles, otherwise weighting different triangles equally. To
produce a nearly equal-area map with minimal shape distortion, we minimize
multiple times, each time weighting scale distortion higher. We start with
scale distortion weighted 0.1 times more than shape distortion and end with
scale distortion weighted 100 times more than shape distortion. Prioritizing
shape distortion in the beginning is necessary to find a good local minimum.
We do most of the optimization using an octahedral mesh of 18432 triangles
(8 · 482), then subdivide in particularly distortion-prone places, then finish
the optimization. To improve the look of the graticule, we fix the North Pole
exactly in place, similar to how we fix the mesh vertices to the sphere in our
sphere and hybrid cartograms.

6 Algorithm performance

In this section, we briefly lay out the runtime and accuracy of our cartogram
algorithm.

34

For the tables below, we calculate relative cartographic error for each
region R as (µR − pR)/pR, as described in previous sections. For the sphere
and hybrid cartograms, the computation of the transformed area µR is based
on the transformed mesh without considering the projection to the sphere.
This projection step introduces a small amount of relative error that the
tables do not capture.

To estimate this error, recall that the area of each triangle is computed
after projecting the vertices to the tangent plane on the triangle’s midpoint
n. Consider an infinitesimal neighborhood of a point vtp on this triangle in
the tangent plane. Using similar triangles, it can be seen that the projection
from the plane triangle to the spherical triangle scales this neighborhood by a
factor of ‖vtp‖ =

√
1 + ‖vtp − n‖2. The relative area error of the projection

on this neighborhood is then
√

1 + ‖vtp − n‖2−1 ≈ ‖vtp−n‖2/2. This means
the maximum error incurred on this triangle is on the order of the area of
the triangle. Since the mesh was subdivided so that the transformed triangle
areas are less than 4π/2048, and since the squared radius of an equilateral
triangle is 4/33/2 times its area, the maximum (relative) error incurred is less
than 0.003 in most cases.

The runtimes below do not include the time taken to compute the area
portion values ψR,T . Depending on the resolution of the region border data,
this can take several hours in Python. However, since the code for this is
not vectorized, it could be greatly sped up by using a compiled programming
language. Creating the meshes takes a negligible amount of time.

As described in section 2, we do the optimization in stages, minimizing
C(V) = W error E(V) +W distD(V) multiple times, setting W dist to be smaller
each time. At each stage, finding a local minimum of C(V) requires thousands
of search steps, stopping when ∇C(V) = 0 is achieved. A key performance
improvement is possible by not requiring a true local minimum to be found,
instead stopping when the size of the gradient is below a certain threshold.
At each stage, we choose a threshold value γ > 0 and stop the optimization

35

when ‖∇C(V)‖∞ < γ. (For the sphere and hybrid cartograms, we remove
the off-sphere component of ∇C(V) before doing this check.) For the first
stage, we choose W error = 1, W dist = 0.1, and γ = 0.01. Going from one
stage to the next, we multiply W dist and γ by 0.1 while keeping W error fixed.

Our implementation uses NumPy; the runtimes below were recorded for
an AMD Ryzen 5 5600 CPU. We may sacrifice accuracy for speed by stopping
after a smaller number of stages. The last few stages are unnecessary for the
sphere and hybrid cartograms because of the aforementioned error caused by
projection.

Plane cartogram
Stage Steps Total time Median rel. error Max rel. error

1 76375 1h 4m 17s 0.0425 4.19
2 2626 1h 6m 27s 0.00472 3.91
3 4345 1h 9m 58s 0.000502 2.59
4 304 1h 10m 13s 4.56 · 10−5 1.06
5 6331 1h 15m 20s 4.81 · 10−6 0.256
6 12212 1h 23m 40s 4.89 · 10−7 0.0355
7 248 1h 23m 50s 6.60 · 10−8 0.00377
8 4209 1h 26m 37s 6.14 · 10−9 0.000378
9 232 1h 26m 46s 6.40 · 10−10 3.78 · 10−5

10 309 1h 26m 59s 4.71 · 10−11 3.78 · 10−6

36

Sphere cartogram
Stage Steps Total time Median rel. error Max rel. error

1 48362 1h 19m 38s 0.0410 3.79
2 4369 1h 26m 39s 0.00446 3.57
3 526 1h 27m 27s 0.000472 2.53
4 1391 1h 29m 43s 5.05 · 10−5 1.04
5 207 1h 30m 0s 4.95 · 10−6 0.262
6 2270 1h 32m 52s 5.53 · 10−7 0.0367
7 361 1h 33m 19s 6.62 · 10−8 0.00389
8 2431 1h 36m 19s 6.56 · 10−9 0.000391
9 202 1h 36m 34s 5.54 · 10−10 3.92 · 10−5

10 108 1h 36m 43s 4.64 · 10−11 3.92 · 10−6

Hybrid cartogram
Stage Steps Total time Median rel. error Max rel. error

1 69268 2h 9m 51s 0.0518 4.64
2 9289 2h 27m 12s 0.00578 4.28
3 5105 2h 37m 1s 0.000657 2.95
4 4649 2h 45m 41s 5.88 · 10−5 1.20
5 9197 3h 2m 42s 6.05 · 10−6 0.303
6 35513 3h 58m 5s 6.60 · 10−7 0.0442
7 6575 4h 8m 8s 7.03 · 10−8 0.00471
8 1476 4h 10m 22s 7.54 · 10−9 0.000474
9 902 4h 11m 44s 7.60 · 10−10 4.74 · 10−5

10 772 4h 12m 59s 6.44 · 10−11 4.74 · 10−6

7 Final Remarks

The algorithm we present in this paper gives a significant improvement in
shape preservation over existing methods. It achieves very low cartographic
error in the sphere and hybrid cases and arbitrarily low error in the plane
case, barring floating-point issues. Potential areas of future research include

37

improving the algorithm’s runtime and testing whether the resulting car-
tograms are rated favorably by map readers.

It is unclear how much mesh subdivision needs to be done to guarantee
that an accurate cartogram is possible. For example, if two regions lie entirely
within a single triangle, it is clearly impossible to make both regions’ areas
match their populations. Finding a sufficient condition for area accuracy to
be possible could be of independent mathematical interest. It is also unclear
why the weight on scale distortion has a strong effect on runtime. Resolving
these questions is a potential area of future research.

The on-sphere techniques presented here could be applied to other car-
togram algorithms. Though Li and Aryana [8] adapted the diffusion method
to the sphere, the same has not been done for rubber-sheet cartograms. Such
on-sphere adaptations of cartogram methods could also be made to take into
account the projection to the plane, similar to our hybrid cartograms.

References

[1] Armijo, L. (1966). Minimization of functions having Lipschitz continu-
ous first partial derivatives. Pacific Journal of Mathematics, 16(1), 1–3.
https://doi.org/10.2140/pjm.1966.16.1

[2] Dougenik, J. A., Chrisman, N. R., Niemeyer, D. R. (1985). An algorithm
to construct continuous area cartograms. The Professional Geographer.
https://doi.org/10.1111/j.0033-0124.1985.00075.x

[3] Gastner, M., Newman, M. E. J. (2004). Diffusion-based method for pro-
ducing density-equalizing maps. Proceedings of the National Academy of
Sciences. https://doi.org/10.1073/pnas.0400280101

[4] Jawaherul Alam, M., Kobourov, S. G., Veeramoni, S. (2015). Quantita-
tive Measures for Cartogram Generation Techniques. Computer Graph-
ics Forum. https://doi.org/10.1111/cgf.12647

38

https://doi.org/10.2140/pjm.1966.16.1
https://doi.org/10.1111/j.0033-0124.1985.00075.x
https://doi.org/10.1073/pnas.0400280101
https://doi.org/10.1111/cgf.12647

[5] Kronenfeld, B. J. (2017). Manual construction of continuous cartograms
through mesh transformation. Cartography and Geographic Information
Science, 45(1), 76–94. https://doi.org/10.1080/15230406.2016.
1270775

[6] Kunimune, J. H. (2020). Minimum-error world map projections de-
fined by polydimensional meshes. International Journal of Cartography.
https://doi.org/10.1080/23729333.2020.1824174

[7] Kunimune, J. H. (2023). Introducing the Elastic pro-
jections. Web. https://kunimune.blog/2023/12/29/
introducing-the-elastic-projections/

[8] Li, Z., Aryana, S. (2017). Diffusion-based cartogram on spheres. Car-
tography and Geographic Information Science, 45:5, 464–475. https:
//doi.org/10.1080/15230406.2017.1408033

[9] Loncaric, M. (2024). Map Projections 2: Solving Numerically. Web.
https://graphallthethings.com/posts/map-projections-2

[10] Nocedal, J. (1980). Updating quasi-Newton matrices with limited stor-
age. Mathematics of Computation, 35(151), 773–782. https://doi.
org/10.1090/S0025-5718-1980-0572855-7

[11] Nusrat, S., Kobourov, S. (2016). The state of the art in cartograms.
Computer Graphics Forum. https://doi.org/10.1111/cgf.12932

[12] Sargent, R. C. (2024). Introducing the Liquid Earth projection. Web.
https://rsargentmath.github.io/posts/liquid_earth/

[13] Sun, S. (2013). A fast, free-form rubber-sheet algorithm for contigu-
ous area cartograms. International Journal of Geographic Information
Science, 27 (3): 567–93. https://doi.org/10.1080/13658816.2012.
709247

39

https://doi.org/10.1080/15230406.2016.1270775
https://doi.org/10.1080/15230406.2016.1270775
https://doi.org/10.1080/23729333.2020.1824174
https://kunimune.blog/2023/12/29/introducing-the-elastic-projections/
https://kunimune.blog/2023/12/29/introducing-the-elastic-projections/
https://doi.org/10.1080/15230406.2017.1408033
https://doi.org/10.1080/15230406.2017.1408033
https://graphallthethings.com/posts/map-projections-2
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.1111/cgf.12932
https://rsargentmath.github.io/posts/liquid_earth/
https://doi.org/10.1080/13658816.2012.709247
https://doi.org/10.1080/13658816.2012.709247

[14] Sun, S. (2013). An optimized rubber-sheet algorithm for continuous area
cartograms. The Professional Geographer. https://doi.org/10.1080/
00330124.2011.639613

[15] Sun, S. (2015). Carto3F program: A fast, free-form algorithm implemen-
tation for area cartograms. Web. http://www.sunsp.net/download.
html

40

https://doi.org/10.1080/00330124.2011.639613
https://doi.org/10.1080/00330124.2011.639613
http://www.sunsp.net/download.html
http://www.sunsp.net/download.html

	Introduction
	Algorithm overview
	Cost function for plane cartograms
	Sphere cartograms
	Hybrid cartograms
	Algorithm performance
	Final Remarks

